ISRAEL JOURNAL OF MATHEMATICS 87 (1994), 181-192

ORLICZ PROPERTY AND COTYPE
IN SYMMETRIC SEQUENCE SPACES

BY

MICHEL TALAGRAND*

Egquipe d’Analyse — Tour 46, U.A. au CN.R.5. n° 754
Université Paris VI, 4 Pl Jussieu, 75230 Paris Cedex 05, France
and
Department of Mathematics, The Ohio State University
231 West 18th Avenue, Columbus, OH {3210, USA

ABSTRACT
We construct a symmetric sequence space that satisfies the Orlicz property
but that fails to be of cotype 2.

1. Introduction

A Banach space X is said to have the Orlicz property if there exists a number
K such that given any n > 0 and any vectors zy, ...,z of X, one can find signs
n; € {—1,1} such that

1/2

(L1) Sl < KIS meall

i<n i<n
A Banach space is said to be of cotype 2 if there exists a number K such that
given any n, and any vectors z1,...,Z, of X, one has

1/2

(1.2) Yolzd? | < KAv|Y mai)

i<n i<n

where Av denotes the average over all choices of signs #;,. .., 7,. Since the aver-
age is less than the maximum, cotype 2 implies the Orlicz property. It had been
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open for some time whether the reverse implication holds. A counter example
was constructed in [T]. The counter example is a Banach lattice. The aim of the
present paper is to show that actually a counter example can be found that is
a symmetric sequence space. That is, the space contains an unconditional basis
(€:)i»1, and the norm of a vector z = ) ;. 7e; is invariant under permutation
of the coefficients. B

THEOREM: There exists a symmetric sequence space that satisfies the Orlicz
property but fails to be of cotype 2.

There is no doubt that there is much less room to construct the above example
than the example of [T]. However, once the proper choice of parameters has
been found, the proof is not more complicated. Several of the key ideas of the
construction of [T] will be preserved in our construction, but the paper is written
to be read independently of [T] and is self-contained.

2. The construction

Basic to the construction is a sequence (n,) defined as follows. We take n_; =
ng = 1/2, and we define the sequence by induction using the following relation:

(2.1) np = 2% Hn, 1 (2%PH2n2 )P,

(Thus, for p > 1, n, is an integer.) There is nothing magic about this choice.
Many other choices are possible. The reason for (2.1) will become clear later. To
simplify notations, we set, for p > 1

(2.2) my = 220202
(2.3), ky = 2Pn,_1,
(2.4). !, = 2y

Thus, we have
(2.5) mp = 2172 n, = 2Pt

We observe that k; = 1 and we consider the function i on N such that for
p > 2 we have

]

kp_1 <i < kp = h(3) =
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It follows that

(2.6) Y h(i) <Y 2t <ot

i<ky e<p

Since kp41 > np, We also have

(2.7) Y hGi) < 272,
i<n,
We denote by H the set of functions of the type h o 0, where ¢ is any permu-
tation of N, and we now describe for » > 1 a class F, of functions on N. The
class F, consists of the functions that are positive and satisfy

1
(28) 1l < =,

r—2

and such that one can find for all £ > 0, and all j < mf functions ke ; € H, and
numbers ay,j, @g; > 0, 3450 j<me @2,; < 1, such that

(2.9) Vi € N, f(Z) < 22‘5 Z ae,jhe’j(i).
>0 j<me

We first prove two properties of 7., that will be crucial in establishing the Orlicz
property.

LeEMMA 2.1: Consider functions ( f,)sSmr in F,. Consider numbers 3, > 0,
Es<m,. Bs = 1. Then
- 1
5 Z fs € Fp.

s<m,

Proof: By (2.9), we know that (with obvious notations) for s < m,

fe < 22_8 Z ae,j,she,j,s0

220 i<mi

so that )
5 Z Bsfs £ 22-(“-1) Z /Bsal,j,she,j,s
s<m, £20 igmi
s<m,

+1

r

and the point is that there are at most m.*' terms in the last summation above



184 M. TALAGRAND Isr. J. Math.

LEMMA 2.2: Consider functions (fs)s<m.,,, in Fr. Consider numbers 3, > 0,
> s<m,4, Bs = 1. Then one can find a set A of integers of cardinal at most k.,
such that the function defined by g(i) = 0 ifi € A and g(i) = } Y s<myyy PBsfs(t)
ifi ¢ A belongs to Fr41.

Proof: Set ¢’ = % E,Smrﬂ Bsfs. The fact that ¢’ satisfies (2.9) (for r +1 rather
than r) is proved as in Lemma 2.1, using the fact that mém,,; < mfill. The
problem here is that ¢’ may not satisfy ||¢'||cc < 1/nr—-1. Consider a subset A of
N, of cardinality k.. We observe that if A’ € H, we have

Y K@) <> @ <2t
i€A i<k,
by (2.6). Thus we have by (2.3)

Y gl <2 = L

icA Np_1

Tt follows that if A has been chosen such that
icA, jE€A=>4(5) <),

then ¢'(j) < 1/n,_; for j € A. This concludes the proof. ]

The third crucial property of F,. (that will ensure that X does not have cotype
2) is unfortunately more complex, and will be investigated in Section 3. We
prepare that study with a simple fact.

LEMMA 2.3: Consider f € F,.. Then we can write f = f1 + fa, where the
following holds:

(2.10) The support of fi has cardinality < nl,
(211) > Al <5
i<n,

Proof: Consider the functions hg ; as in (2.9). We observe that any function
he ; can be written h},j +h§,j, where th’j“w < 2"*/k.4q = 1/n, and where the

support of h}, ; has at most k, elements. The function

o= ) 20 Y sy

0<e<r j<mt
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has a support of cardinality at most
ke mi < 2k.m] =n,.
<r

We set

gz = 224 Z ag,jh%,j + 22_1 E agjhe;.

<r j<mt £r j<mi
We recall that

B2 ;llco < 1/ny < 1/m]

and that (as follows from (2.7)), for A’ € H, we have

(2.12) Y rG) <2t
i<n,
Thus
PIIZORSD DR DETED DA A DL
i<n, 1Se<r j<mt t>r i<mt
<35.
This completes the proof. [

We now describe the space. Consider the class F of functions that can be
written f = 3 5, a,fr where a, > 0, Y .ar =1, fr € F.. Then for a sequence
z = (2(3))i>1, we set

lizli = sup ) [=(D)IV/F ().
fEF 51
This obviously defines a symmetric sequence space. To simplify notation, for two
functions z,y on N, we write

(@,y) =Y =(i)y(i)

i>1

so that

llzll = sup(jzl, /7).
fEF
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3. Failure of cotype

Since X satisfies the Orlicz property (as will be shown in Section 4) it is of cotype
q for each ¢ < 2. It is then known that for each sequence (x;);<n of X one has

Al Z izl < K|zl
i<N

where 2(i)? = 3_, .y 22() for all i € N. (A more self-contained argument is given
in [T].) It thus suffices to find vectors z; for which the ratio
2= <n llz;]12)/2 is arbitrarily large. We consider an integer 7 > 0, that is
fixed once and for all. We consider the vector z = (z(i)), where

9-p/2

Vs

z(i) = ifkp_1<i<ky, p<LT

and z(i) =0if i > k..
We observe that h € Fy, so that h € F. Thus
kp — kp_1
llzll > (z, Vh) =) 2 /2
p<T P
since obviously k, > 2k,_;.
Consider now the vector y = (y(¢)), where

9-p/2

y(2) = forn,_1 <i<ng, p<T
VM

and y(¢) = 0 if ¢ > n,. We observe that
¥ o2es<er<e( Y £0)
kp_] S‘L<k? n,-15i<np

since obviously n,—1 < n,/2. Thus, since obviously n, — n,—1 > kj, there exists
a family (z;);<n of vectors of X, such that x; is of the type z o o; for a certain
permutation o; of N, and such that

1 2/ 2.
~ 7 (1) < 29°(3)
Njgvxz v (i

for all i € N. Since ||z;|| = ||z|| for all j, we have

Y llzil? = Nzl > Nr?/4
iSN
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and

1/2
(Z Ile|l2) > rVN/2.

i<N

Thus, to conclude the proof it suffices, since T is arbitrary, to show that |jy;]| <
16 + 24/7. To do this, given a function z with 22 € F, we estimate (|y|, |z|). By
definition of F we can write 22 = =3 >1 a. f. with f,. € F,, Z,N a.=1,a, >0
Obviously, we have, using the inequality vVA+ B+ C < VA + VB + V/C, that

> lw@)lle@) < > Ip) + 11(p) + I11(p)

21 p<T

—p/2
I(p) 27 Z ,Zarfr(i
np-1<ikn, | r<p

/2
1) == \/n_ 3 fernitontd

9-p/2
I1(p) = Z Z a fr(i).
\/ﬂ np_1<i<n, Y r2p+2

To handle I1(p), we observe that by Cauchy-Schwarz we have, by (2.7),

I1(p) < 2P fay7 [ Y fosa(3)
i<ny

<272 Jaii, [ ) h()

where

5

i<np
S 2,/ap+1.
Thus, by Cauchy-Schwarz we have
(3.1) Y H(p) <27 [ apir < 2V

p<T p<7

To handle I1I(p), we use Cauchy-Schwarz to see that

) <2 [$5 afl

i<n, r2p+2

< 2-P/?
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since ||frlloo < nity < ny! for r > p+ 2. To handle I(p), using Lemma 2.3, we
write

dorfe=f+f"

r<p

where the support of f’ has cardinal < ¥
5. Now I(p) < IV(p) + V(p), where

r<p e < 2ny and where 3-, . f(i) <

92—p/2

IV(p) = T §s:< V@),

2-p/2
Vip) = E Vv F'(3).
) Ve np-15i<n, o

By Cauchy-Schwarz,

—p/2
) < W_ (card supp /Y/2( 3 (1))

i<n,

1\ 1/2
< 9~P/2 (%) (2P+2)1/2
< "y

< 27P/?

and

1/2
Vp) < 277 (Z f”(i)) <3277

i<n,

1t follows from these relations that

Wbl <55 2772 427

p>1

4. The Orlicz property

We consider vectors (z¢)e<n of X, and we assume that

4.1) Voe=+1, || mezel S 1.
<N

We set 52 = 3, l|zell?. Our aim is to show that this quantity is bounded by
a constant.
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There is no loss of generality to assume that the sequence ||z,|| decreases, so
that

52
(4.2) Jaell? < =

We set B¢ = ||z¢]|?/S?, so that Y, B = 1. For each ¢, we consider a function
ge € F such that

(4.3) (|zel, v/ge) 2 3llell /4.

By definition, we can write

9= arfur

r>1
where fo,. € Fp, Y agr =1, 0gr > 0. We set
™
= Z Becgrfor and = z Beog r.
<m, e<m,
We observe that v, <1, and that, by Lemma 2.1 we have g, € 27, F.

By Lemma 2.2, we can find a set A, with card A, < rk,, such that the function

g:.’ = lA'c_ Z ﬁlal,sﬂf,s

m,<f<mry1,8<T

belongs to 26, F,41, where

61‘ = Z ﬁlal,s-

m, << myyy,8<r

Observe that > 6. < 1. Thus, the function

g9=> g +g/

r>1
belongs to 8F.
LEMMA 4.1: Ze lzela, || < Tk,
Proof: We observe that ||f|lc < 1 for f € F,. Also, supscr f(i) = 1 for all 4.
By (4.1), we have

Vi, V==l lz neze(i)] < 1
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so that 3>, |Ze(i)] < 1. Thus,

> lwei)] € card A, <k,
i€A <N

Now

lzela, )l < ) |ze(d)l

€A,
since f <1 for f € F. ]

We set
H, = {£;£> me, ||lzela, || 2 2777 |ze]l}

and H = J,5, H-.
LEMMA 4.2: ZteH llzell® < S.

Proof: By Lemma 4.1 and the definition of H,., we get

3 llzell < r2mtk,

€€H,

By (4.2), since £ > m,. for £ € H,., we have

Y llzell® < max [||( > llzel)

¢€H, ¢eH,

S
< r41 < -r
< ——-—\/_r(r2 k) < Sr2

by (2.5). Summation over r concludes the proof. 1

Having controlled ||z,|| for £ € H we try to control the other values of £. We
set

B¢ = U{Aa; my < f}

If £ ¢ H, for m, < ¢, we have

<277l

||lzela,

so that )
el < 3lleell
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Setting ye = z¢1p;, we have

1
llye — zell = ||lzelp, || < §|I$z||-

Consider the function

fé = Z at,rft,rhe,r

where hy, = 14: if m, < ¢, and hyr =1 if m, > £. Then we have

(lzels o/ £2) = Y lwe@ 2O 2 D lwe@l fe(0)]?

i>1 i>1
since fi(i) = fo(3) where yo(2) # 0. Now, since \/f; € F,
(lyels V/Fe) 2 (|zel, v/Fe) = (|ze = vel, /fe)
2 (Jeel, VFe) — llze = vel
> 3llzell /4~ llwell /2 > loel/4.
We set
ar = (|zel, 4/ fo)-
We have shown that, for £ ¢ H,

(4.4) ae > ||ze||/4-

Now, setting ¢’ = Y, Bef;, we have

(45) Y ai <Y adllzell =) llzell(lzel, 1/ £2)

<N ¢<N £<N

=" (e, llelly/ £2)

<N

=5 (lzel, \/Befs)

<N

_s5y (z mmn/%)

i>1 \¢<N

1/2 1/2
<8y (Z d(z’)) (Z Befé(i))

i>1 \¢<N <N

<N

() )
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where we have used Cauchy-Schwarz. Now, by Kintchine’s inequality, we have,
for some numerical constant K (= v/2), that

(Zzg(i))w < K Av|S nezel.

The last term in (4.5) is thus less than

AvKS 1S neme(i)] 19 ()M < KS Av(| Y mexel, v/ 9')-

i>1

But we observe the crucial fact that g' = g = 3",y g, + g; € 8F, so that this

last term is at most
4K S Av| ) meme| < 4K S

since the average is less than the max. By (4.5), we have

> el < 64KS
¢gH

and, combining with Lemma 4.2, we get

§2=3 "fzml?=Y_+) <65KS

<n ¢gH teH
so that S < 65K. [ |
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