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ABSTRACT 

We construct a symmetric sequence space that satisfies the Orlicz property 

but that fails to be of cotype 2. 

1. I n t r o d u c t i o n  

A Banach space X is said to have the Orlicz property if there exists a number 

K such that  given any u > 0 and any vectors x l , . . . ,  x,~ of X ,  one can find signs 

m E ( - 1 ,  1} such that  

(1.1) IIx, l[ <_ gl l  ll. 
i <<_n 

A Banach space is said to be of cotype 2 if there exists a number K such that  

given any n, and any vectors x l , . . . ,  x,~ of X,  one has 

( (1.2) E Itxill2 <_ g Avil ~ ~x~ll 
i_<n i<n 

where Av denotes the average over all choices of signs ~71, . . . .  ~?,~. Since the aver- 

age is less than the maximum, cotype 2 implies the Orlicz property. I t  had been 
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open for some time whether the reverse implication holds. A counter example 

was constructed in [T]. The counter example is a Banach lattice. The aim of the 

present paper is to show that  actually a counter example can be found that is 

a symmetric sequence space. That  is, the space contains an unconditional basis 

(ei)i>l, and the norm of a vector x = ~ i>1  xiei is invariant under permutation 

of the coefficients. 

THEOREM: There exists a symmetric sequence space that satisfies the Orlicz 

property  but Jails to be o[ cotype 2. 

There is no doubt that  there is much less room to construct the above example 

than the example of [T]. However, once the proper choice of parameters has 

been found, the proof is not more complicated. Several of the key ideas of the 

construction of [T] will be preserved in our construction, but the paper is written 

to be read independently of IT] and is self-contained. 

2. The  cons truct ion  

Basic to the construction is a sequence (np) defined as follows. We take n-1 = 

no = 1/2, and we define the sequence by induction using the following relation: 

= 22p+4~t _ [26p+2n 2 ~p (2.1) np p - ~  p- lJ  • 

(Thus, for p > 1, np is an integer.) There is nothing magic about this choice. 

Many other choices are possible. The reason for (2.1) will become clear later. To 

simplify notations, we set, for p > 1 

(2.2) m p  26p+2n2 p--l ,  

(2.3), k v = 2Pnp-1, 

' = 2kvm ~. (2.4). np 

Thus, we have 

'~4p+4 k2. = 2 p + 3 - t  (2.5) m p = .  .vp, np 'ltp. 

We observe that  kl = 1 and we consider the function h on 5t such that  for 

p >_ 2 we have 
2 p 

kp-1 <_ i < kp ~ h(i) = --~p. 
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It follows that  

(2.6) E h( i )  ~_ E 2£ ~- 2p+l" 

Since kp+l >np, we also have 

(2.7) ~ h(i) _< 2~ +~. 
i<n~, 

We denote by H the set of functions of the type h o a, where a is any permu- 

tation of N, and we now describe for r >__ 1 a class ~'~ of functions on N. The 

class ~'~ consists of the functions that are positive and satisfy 

1 
(2.8) II.flG ~ - - ,  

rtr--2 

e functions h,,y E H, and and such that  one can find for all g _> 0, and all j _< m~ 

numbers ae,j, a£,j >_ O, ~e>o,j<m~ ae,j <__ 1, such that 

(2.9) Yi E N, f(i) <_ E 2-~ E atjh,,j(i). 
e>o j<~ 

We first prove two properties of ~'r, that  will be crucial in establishing the Orlicz 

property. 

LEMMA 2.1: Consider functions (f~)8<_m~ in .Tr. Consider numbers ~ >_ O, 
~ < . ~  fl, = 1. Then 

1 

8~ftlr 

Proof'. By (2.9), we know that (with obvious notations) for s <__ m~ 

fs ~_ E 2-e E aLJ,'hLJ,s, 

so that  
1 

E _< E2-('+1) E 
_ _ 2_ r 

s~_r~ v 

and the point is that  there are at most m~ +1 terms in the last summation above 

| 
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LEMMA 2.2: Consider functions (.fs)8<m,.+~ in ~r. Consider numbers 13s > O, 

~8<m~+~ ~s = 1. Then one can find a set A of integers of cardinal at most k~, 
1 such that the function defined by g(i) = 0 if i E A and g(i) = ~ ~s<_m~+~ ~f~(i)  

if i q[ A belongs to Jrr+l. 

Proof." Set g' = 1 ~<m~+~ f~fs. The fact that g' satisfies (2.9) (for r + l  rather 

than r) is proved as in Lemma 2.1, using the fact that t < ~e+l  The m v m r + l  -- "~v+l" 

problem here is that g' may not satisfy Itg'lloo <_ 1/n~_1. Consider a subset A of 

N, of cardinality k~. We observe that if h' E H, we have 

h'(i) < Z h(i) _< 2 "+~ 
lEA i<_k~ 

by (2.6). Thus we have by (2.3) 

E g'(i) < 2" - 
iEA 

kr 

n r - 1  

It follows that if A has been chosen such that 

l E A ,  j q! A=~ g'(j) < g'(i), 

then f ( j )  < 1/n~_l for j ~ A. This concludes the proof. | 

The third crucial property of ~'~ (that will ensure that X does not have cotype 

2) is unfortunately more complex, and will be investigated in Section 3. We 

prepare that study with a simple fact. 

LEMMA 2.3: Consider f E ~ .  Then we can write f = f l  + f2, where the 

following holds: 

(2.10) The support of f l  has cardinality <_ n~, 

(2.11) Z f2(i) < 5. 
i<n~ 

Proof: Consider the functions h~,j as in (2.9). We observe that any function 

h~,j can be written h~,j +h~j, where IIh~,jl]oo _< 2r+l/k~+l = 1/nr and where the 
support of h~,j has at most k~ elements. The function 

g l=  E 2-~ Z a~,jh~,j 
o<~< ; j<ml 
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has a support  of cardinality at most 

k,. m <_ 2k,.m: = n,.. 
e<r 

We set 

g~ = E2-'  E o,~h,+~ + E~-'  E ~,,~h,~ 
t<_r j_<,n l , e>r j<rn~ 

We recall that  

2 1 / m ;  Ilh+,jlloo _< a/n= _< 

and that  (as follows from (2.7)), for h' E H,  we have 

(2.12) E h'(i)  < 2 r++. 
i<n+. 

Thus 

E ++(+) -< E +-' E +,,+ + E ~-'++++ E +,,+ 
i<n+,, l<_+<_r j<_m~ +>r j<m~ 

< 5 .  

This completes the proof. II 

We now describe the space. Consider the class ~ of functions that  can be 

writ ten f = ~-~>1 a,.f,, where a~ _ 0, ~ a~ = 1, f~ E J:~. Then for a sequence 

x = (x(i))~>l, we set 

Ilxll --- sup ~ Ix(i)l+¢']~. 
/E~: i> t 

This obviously defines a symmetric sequence space. To simplify notation, for two 

functions x, y on N, we write 

(+, y) = ~ +(i)+(+) 
i_>1 

so that  

lixl+ = sup(Ixl, x/~). 
IEY 
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3. Fa i lure  o f  c o t y p e  

Since X satisfies the Orlicz property (as will be shown in Section 4) it is of cotype 

q for each q < 2. It is then known that for each sequence (xj)j<N of X one has 

Av ][ ~ rb'xjl [ < g[Iz[I 
,Tj=±l j<N 

where z(i) 2 = ~j<_N x2(i) for all i E N. (A more self-contained argument is given 

in IT].) It thus suffices to find vectors xj for which the ratio 

] N ] - I ( ~ j < N  IIxj[]2) 1/2 is arbitrarily large. We consider an integer r > 0, that is 

fixed once and for all. We consider the vector x = (x(i)), where 

2-p/2 
x ( i ) = - - ~ - p  i fkp_l  < i < k p ,  p < r  

and x(i) = 0 if i >_ k,. 

We observe that h E Y=l, so that h E ~ .  Thus 

Ilxll >_ <x, v %  -- ~ k~ - kp_x ,_<~ ~- >~/2 

since obviously kv > 2kp_l. 

Consider now the vector y = (y(i)), where 

2-p/~. 
y(i) - for np-1 < i < n p ,  p < T 

and y ( i )  = 0 if i > n~. We observe that 

x 2 ( i ) _  2-P < 2(  
kp-l <_i<kp 

since obviously np-1 g np/2. Thus, since obviously np - np-1 ~ kp, there exists 

a family (xj)j<N of vectors of X,  such that xj is of the type x o aj for a certain 

permutation aj  of 51, and such that 

1 

j<N 

for an i e N. Since llxjil = ll~ll for an y, we have 

llxJll ~ = Nllxll  2 >_ N~-~/4 
j<N 
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and ) 1/2 
llxjll ~ > ~ / 2 .  

j<N 

Thus, to conclude the proof it suffices, since T is arbitrary, to show that  Iiy~lI -< 

16 + 2~/'~. To do this, given a function z with z 2 E ~', we estimate {lYl, Izl) • By 

definition of~" we can write z 2 = ~ > _ l  arf~ with fr  E ~-~, ~ > 1  ~ = 1, ~ _> 0, 

Obviously, we have, using the inequality ~/A + B + C _< ~ + v/B + v ~ ,  that 

lu(i)llx(i)l <_ ~ S(p) + SS(p) + sss(p) 
i>l p<r 

where 

s@)- v ~  .._,_<,<n. 

2-.i: Z v/..+,s.+,(i), ss(p)- v~7-.-,_<~<-. 

sss(p)= 2-'1--~ ~ 7 ,~ ,S - ( i )  • 
V ~  nn_i<_i<nn 2 

To handle II(p) ,  we observe that  by Cauchy-Schwarz we have, by (2.7), 

SS(p) _< 2-,'i2.e-~-;-~.+,1)..7 ' s.+,(i) 
Vi_<-. 

<_ 2-~12 ~v,-a--~p+~ ~<_~, h(i) 

_< 2v%+~.  

Thus, by Cauchy-Schwarz we have 

(3.1) E II(p) < 2%/fT /~__~ (:lp+ 1 ___< 2~/~. 

To handle I I I (p) ,  we use Cauchy-Schwarz to see that  

sss(p) <_ 2 - . i2 / ]~  
r_>p+2 

< 2-p/2 
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since I[f~ll~ <- n-1~-2 < np-1 for r > p + 2. To handle I(p), using Lemma 2.3, we 

write 

E arfr = f '  -t- f "  
"r<_p 

where the support of f '  has cardinal _< y~<p n~ <_ 2n~ and where )-~i<,~p f"(i) <_ 
5. Now I(p) < IV(p) + Y(p), where 

I V ( p ) -  ~ ,,,-,<,<,,, 

2-,/' E ~" 
v(p) = -~p .,_,_<,<., 

By Cauchy-Schwarz, 

2-p12 .  
<  :ca a E 

i<np 

knp / 

< 2-P/2 

and 

V(p) < 2-P/2 (i~<_npf"(i) ) 

It follows from these relations that 

< 3 .2  -p/2. 

(lyl, I~I) -< 5 ~ 2-P/2 + 2~. 
p>l 

4. T h e  Or l i cz  p r o p e r t y  

We consider vectors  (xl ) t< N of X, and we assume that 

(4.1) V r/t = ~1, II E r/txell _< 1. 
t<<_N 

We set S 2 = ~ t < N  ]lXtH 2" Our aim is to show that this quantity is bounded by 

a constant.  
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There is no loss of generality to assume that the sequence Iixei[ decreases, so 

that 

S 2 
(4.2) 11~112 -< T 

We set ~ = IIxd]2/s 2, so that ~ < N  ~ = 1. For each ~, we consider a function 

ge E ~ such that 

(4.3) (Ixe], v ~ )  >- 311xel]/4. 

By definition, we can write 

r>_l 

where fe,~ E .7-~, ~ al,~ = 1, ae,~ _> 0. We set 
7" 

g l =  E ~ a ~ , ~ y e ,  ~ and ~/~= E ~ a e , ~ .  

We observe that  ~ 7~ -< 1, and that,  by Lemma 2.1 we have g~ E 2 ~ ' ~ .  

By Lemma 2.2, we can find a set A~, with card A~ <_ rk~, such that  the function 

m r  < ~ m r + l  , s < r  

belongs to 2~.7"~+1, where 

mr <~<_mr+l ,S<r 

Observe that ~ ~ < 1. Thus, the function 

g = E 9~ ÷ 
r>l 

belongs to 8~'. 

LEMMA 4.1: Z ~  I1~1~,11 --< rk,. 

Proof: We observe that Ilfll~ -< 1 for f E ~'~. Also, s u p f ~ y f ( i )  = 1 for all i. 

By (4.1), we have 
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so that EL<N i~(~)i <- 1. Thus, 

ieA,.,t<_N 

Now 

since f ~ 1 for f E ~'. 

We set 

and H =  Ur>lHr. 
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Ixdi)l _ cardAr _< rkr. 

IIx:A.II _< ~ Ix~(i)l 
iEA~ 

Hr = {£;£ > mr, [[XelA,.[[ ~ 2-r-Xllxell} 

LEMMA 4.2: EtEH lixtii2 -< S. 

Proof." By Lemma 4.1 and the definition of Hr, we get 

E li'Tt li ~-~ 1"2r+1 kr" 
£EH~ 

By (4.2), since f > mr for t E Hr, we have 

iix, iL ~ < max tlx, il( Z li~,li) 
- -  £ E H ~ -  

tEH~ tEH~ 

S 
_< ~/-m--~(r2r+Xkr) _< Sr2 -r 

by (2.5). Summation over r concludes the proof, l 

Having controlled [[xt[[ for l E H we try to control the other values of £. We 

set 

B¢=U{As;m, <_~}. 

If ~ ¢ H,  for m, _< g, we have 

[[XelA.[[ _< 2-'-lllxe[[ 

so that  

]lx:.,ll _< ~lix~il. 
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Setting ye = xtlB~, we have 

1 
Ilyt - :tell = Ilxtl.,ll  _< 511:tell. 

Consider the function 

ftt= E c~t,rfe,rhe,r 

where ht,~ = 1A~ if m~ < e, and he,r = 1 if m~ > L Then we have 

(Ixtl, V/~> = ~ lxt(i)l Ifg(i)l 1/z > ~ lye(i)llh(i)l ~/~ 
i> l  i> l  

since f~(i) = ft( i)  where ye(i) ~ O. Now, since ~ E ~ ,  

<lyth x/~t)  > <lxtl, v ~ t >  - <lxt - ytl, v~t )  

> <l:tel, x/~t> - II:te - yell 

___ 311:ttll/4- Ilxell/2 >__ II:ttll/4. 
We set / - -  

ae = <l:tel, ~ f ~ ) ,  

We have shown that ,  for e ¢ H,  

(4.4) at>_ Ilxell/4- 

Now, setting g' = ~e_<N &f~, we have 

(4.5) ~ a~ ~ ~ aellxell 
e<N t<N t<N 

g<N 

*<N 
p 

i>l £<N 

1/2 
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where we have used Cauchy-Schwarz. Now, by Kintchine's inequality, we have, 

for some numerical constant K(= v~),  that 

2 1/2 
( E x e ( i ) )  < K Avl ~ leXeJ .  

The last term in (4.5) is thus less than 

av K S  ~ J ~-~ ~?exe(i)J Jg'(i)J 1/z < K S  Av (I ~ 'lexe[, v~7). 
i>1 

But we observe the crucial fact that g' = g = ~e<__N g~ + g~' E 89 v, so that  this 

last term is at most 

4KS Av II ~ nexell <_ 4KS 

since the average is less than the max. By (4.5), we have 

Ilxell 2 <_ 64KS 
eCH 

and, combining with Lemma 4.2, we get 

s2= ~ Ilxell2 --- ~ + ~ _ 65KS 

so that  S < 65K. 

e<n 

I 

£~H gEH 

R e f e r e n c e s  
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